4
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Simulate a skewed salary distribution (e.g., exponential distribution)
np.random.seed(42)
population = np.random.exponential(scale=70000, size=10000) # Skewed salaries
# Take 10 random samples, each with 50 salaries, and compute their means
sample_means = []
for _ in range(10):
sample = np.random.choice(population, size=50, replace=True)
sample_means.append(np.mean(sample))
# Plotting the sample means distribution
plt.figure(figsize=(8, 5))
sns.histplot(sample_means, bins=10, kde=True, color='skyblue', edgecolor='black')
plt.title("Sampling Distribution of Mean Salaries (10 samples of size 50)")
plt.xlabel("Sample Mean Salary")
plt.ylabel("Frequency")
plt.grid(True)
plt.tight_layout()
plt.show()
Comments
Post a Comment